Math 236 - Test 2 Name keu
March 6, 2024 © Score

Show all work to receive full credit. Supply explanations when necessary. You may use your
calculator to obtain any RREF.

1. (8 points) Determine whether the set is a linearly dependent or independent subset of
Msx2. Then say whether or not it is a basis for M.
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2. (6 points) Explain why the following set in R? must be linearly dependent. Then find
“a two-element linearly independent subset, and prove the linear independence.
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3. (6 points) Find a basis for the subspace of R* spanned by the following vectors:
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4. (3 points) Suppose A is an n X n matrix. Give three different statements that are Use

~ equivalent to the statement “A is nonsingular.” (The definition does not count as /
one.) / B
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5. (3 points) Name or describe three different vectony spaces of dimension 6.
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6. (6 points) Find a basis for, and the dimension of, the solution set of the following
system.

Ty - 4.’172 + 3$3 — T4
2z7 — 8z9 + 6x3 — x4
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7. (5 points) Determine a basis for the row space of the matrix A = g g g —21
011 -1
~What is the rank of A?
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8. (8 points) Consider the function F : R* — My, defined by
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Show that F' is one-to-one and onto.
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9. (3 points) Define three different isomorphisms between R® and P,. You don’t need to

prove that they are actually isomorphisms (just be sure of it).
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10. (5 points) Suppose that h: V — W is a homomorphism and that {v3,3, ... ,Un} is a

linearly dependent set in V. Prove that {h(v1), h(v3), ..., h(v;)} is a linearly dependent
set in W. . ' _
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11. (6 points) Suppose that h: V — V is a homomorphism and that B = (El, Ba, ... ,En)

is a basis for V. Prove the statement: If h(ﬁ_;-) = f; for each basis vector, then h is the
‘identity map (that is, h(7) = ¥ for all 7 € V).
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12. (6 points) Consider R? with basis B = << ) ( )> Suppose h : R? — P; is a
homomorphism satisfying

(( ))—3+2x and h (01))

Compute h( (i) )
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13. (10 points) Consider the homomorphism A : Mayxs — P, defined by

h((‘c’ 2)) =a+b+c+de.

(a) Before you work any other parts of this pr‘oblem, determine the sum of the rank
of h and the nullity of h, and say how you know.
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(b) Find a basis for the range space of h. Then stéte the rank of h.
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(c) Find a basis for the null space of h. Then state the nullity of A.
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The following problems are due March 18. You must work on your own.

14. (8 points) A square matrix with a single 1 in each column (or row) and 0’s elsewhere
is called a permutation matriz. For example, P is a 3 x 3 permutation matrix:
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(a) For the rest of this problem, let A = (4 5 6). Compute PA and explain the
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(c) What multiplication by what permutation matrix transforms A to the following?
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(d) What multiplication by what permutation matrix transforms A to the following?
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15. (5 points) Typically we show that two sets A and B are equal by showing that every
element of A is in B and then showing that every element of B is in A.

Let’s use this idea to prove that under a homomorphism, the image of a span is the
span of the image. In particular, let’s prove the following result.

Proposition: Suppose A : V — W is a homomorphism. Then for any
L1, %2, ...,TninV, h(span({Z1, L2, . .., Za})) = span({h(Z1), R(Z2), . . ., M(Z,)}).
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(a) Let 7 be an arbitrary vector in h (span({Z1,s,...,%,})). Then § = h(Z) for
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(b) Now let i be an arbitrary vector in span({h(%1), h(Z2), ..., h(Z,)}). Write what
this means and continue the train of thought to show that 7 G h (span({Z1, Z2, . . ., Zn}))-
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The proof of the proposition above is now complete.
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16. (12 points) In this problem, we are going to take another look at Gaussian elimination
You may use your calculator or computer to carry out the matrix operations below.

Consider the matrix
: 1 3 1
A= 2 0 4
-1 -2 -3
1 00
(a) Let Ey=| -2 1 0] and compute E;A.
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(d) Finally, compute E3F>F;. Call it L, and notice that L is a unit lower triangular
matriz. Then compute LA, and notice that LA = U, where U is the upper , -\3\
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(e) The matrices Ey, E,, and Ej are examples of elementary matrices. Multiplication
by an elementary matrix performs a single elementary row operation. Look back
at the elementary matrices above, and think about how they were chosen to zero

out entries in A.
1 3 3
A=1]2 -5 -21}.
1 -3 =10

Now let
Find the sequence of elementary matrices that transforms A to an upper triangular
matrix. That is, find L so that LA=U.
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