Math 236 - Test 3

April 10, 2024
Name \qquad
Score \qquad

Show all work to receive full credit. Supply explanations when necessary. You may use your calculator to obtain any RREF.

1. (5 points) Prove that for any $m \times n$ matrices G and $H,(G+H)^{T}=G^{T}+H^{T}$. (Helpful hint: The i, j entry of matrix M is the j, i entry of M^{T}.)
2. (5 points) Recall that a matrix is symmetric if it is equal to its transpose. Use the result from problem 1 to prove that for any square matrix A, the matrix $A+A^{T}$ is symmetric. (Give a reason for each step of your proof.)
3. (5 points) For $n \times n$ matrices S and T, should you expect $(S+T)(S-T)=S^{2}-T^{2}$? Explain.
4. (5 points) Write the first product as a linear combination of the columns of the matrix and the second product as a linear combination of the rows.

$$
\left(\begin{array}{ccc}
2 & 3 & 1 \\
-3 & 4 & 7 \\
-1 & 9 & 3
\end{array}\right)\left(\begin{array}{c}
2 \\
4 \\
-5
\end{array}\right) \quad\left(\begin{array}{lll}
5 & -3 & -2
\end{array}\right)\left(\begin{array}{ccc}
4 & -3 & 1 \\
1 & 1 & -1 \\
3 & -3 & 7
\end{array}\right)
$$

5. (5 points) For any square matrix A, the matrices $A^{T} A$ and $A A^{T}$ are symmetric. Prove it.
6. (8 points) Show that H has infinitely many right inverses, but that it has no left inverse.

$$
\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

7. (6 points) Suppose G and H are invertible matrices. Is it true that $(G+H)^{-1}=$ $G^{-1}+H^{-1}$? Justify your answer.
8. (6 points) Let D be an $n \times n$ diagonal matrix with diagonal entries $\delta_{1}, \delta_{2}, \ldots, \delta_{n}$.
(a) Give a condition on the δ 's that completes the following phrase:
D is invertible if and only if \qquad .

Justify your answer.
(b) Given your condition on the δ 's, what is D^{-1}.
9. (6 points) Consider the matrix A, where x is a real number: $\quad A=\left(\begin{array}{cc}x & 2 \\ -4 & x\end{array}\right)$.
(a) Show that A is nonsingular for any x.
(b) Compute A^{-1}.
10. (12 points) Consider the bases $B, D \subseteq \mathcal{P}_{2}$.

$$
B=\left\langle 1+x, x+x^{2}, 1+x^{2}\right\rangle, \quad D=\left\langle 2 x, 1,4 x^{2}\right\rangle
$$

(a) Find the change-of-basis matrix with respect to B, D.
(b) Let p be a polynomial with $\operatorname{Rep}_{B}(p)=\left(\begin{array}{l}2 \\ 4 \\ 8\end{array}\right)_{B}$. Find $\operatorname{Rep}_{D}(p)$.
11. (4 points) Is it possible for a change-of-basis matrix to be singular? Explain your reasoning.
12. (12 points) Consider the basis for \mathbb{R}^{3} shown below:

$$
B=\left\langle\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
2 \\
3 \\
1
\end{array}\right)\right\rangle .
$$

Use the Gram-Schmidt process to find the corresponding orthonormal basis.
13. (7 points) Suppose that $B=\left\{\vec{\beta}_{1}, \vec{\beta}_{2}, \ldots, \vec{\beta}_{n}\right\}$ is a set of nonzero mutually orthogonal vectors. Prove that the set is linearly independent.
14. (4 points) Prove that $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}$.
15. (4 points) Compute the determinant of A by using a Laplace expansion.

$$
A=\left(\begin{array}{ccc}
3 & 0 & 1 \\
1 & 2 & 2 \\
-1 & 3 & 0
\end{array}\right)
$$

16. (6 points) Find the inverse by using the adjoint.

$$
T=\left(\begin{array}{ccc}
1 & 0 & 4 \\
2 & 1 & -1 \\
1 & 0 & 1
\end{array}\right)
$$

