Math 236 - Final Exam
 May 8, 2024

Name \qquad
Score \qquad

Show all work to receive full credit. Supply explanations when necessary. Unless otherwise indicated, you may use your calculator to obtain any RREF.

1. (10 points) Consider the following system of linear equations.

$$
\begin{aligned}
x+y+z & =1 \\
2 x+3 y+4 z & =0 \\
5 x+6 y+7 z & =3
\end{aligned}
$$

(a) Set up the corresponding augmented matrix and compute its RREF by hand. (You may use your calculator to check your answer.)
(b) Use the RREF to determine the general solution of the system.
2. (4 points) Give an example of a function from \mathbb{R}^{2} into \mathbb{R}^{2} that is not one-to-one and say why.
3. (4 points) Show that U is a subspace of $\mathcal{M}_{2 \times 2}$.

$$
U=\left\{\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right): a, b, c \in \mathbb{R}\right\}
$$

4. (2 points) Show that U_{1} is NOT a subspace of $\mathcal{M}_{2 \times 2}$.

$$
U_{1}=\left\{\left(\begin{array}{ll}
1 & b \\
0 & c
\end{array}\right): b, c \in \mathbb{R}\right\}
$$

5. (8 points) Determine whether the set is a linearly dependent or independent subset of $\mathcal{M}_{2 \times 2}$. Then say whether or not it is a basis for $\mathcal{M}_{2 \times 2}$.

$$
\left\{\left(\begin{array}{ll}
0 & 3 \\
9 & 1
\end{array}\right),\left(\begin{array}{cc}
8 & 1 \\
-11 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right),\left(\begin{array}{cc}
1 & 2 \\
5 & -1
\end{array}\right)\right\}
$$

6. (4 points) Consider the basis $B=\left\langle 1+x, 1-x, x^{2}\right\rangle$ for \mathcal{P}_{3}. Let $p(x)=3-x-3 x^{2}$ and find $\operatorname{Rep}_{B}(p(x))$.
7. (10 points) Let $A=\left(\begin{array}{ccccc}1 & 1 & 1 & 1 & 3 \\ 1 & 2 & 1 & 0 & 7 \\ 1 & 0 & 1 & 1 & -1\end{array}\right)$.
(a) Find a basis for the row space of A.
(b) Find a basis for the column space of A.
(c) What is the rank of A. How do you know?
8. (4 points) Suppose A is an $n \times n$ matrix with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$. What are the eigenvalues of A^{3}. Explain your reasoning.
9. (20 points) Consider the matrix

$$
M=\left(\begin{array}{ccc}
5 & -10 & -5 \\
2 & 14 & 2 \\
-4 & -8 & 6
\end{array}\right)
$$

(a) Find the characteristic polynomial of M. You need not simplify.
(b) If you factor the characteristic polynomial, you will find

$$
p(\lambda)=(\lambda-5)(\lambda-10)^{2} .
$$

What are the eigenvalues of M and their corresponding algebraic multiplicities?
(c) Find eigenvectors corresponding to the eigenvalues.
(d) What are the geometric multiplicities of the eigenvalues?
(e) Is M diagonalizable? If so, find matrices P and D so that $M=P D P^{-1}$, where D is a diagonal matrix.
10. (6 points) Suppose that \vec{w}_{1} and \vec{w}_{2} are linearly independent vectors in the inner product space V. Also suppose that \vec{u} is a nonzero vector in V that is orthogonal to both \vec{w}_{1} and \vec{w}_{2}. Prove that \vec{w}_{1}, \vec{w}_{2}, and \vec{u} are linearly independent.
11. (4 points) Define a product on \mathbb{R}^{3} by

$$
\left\langle\left(\begin{array}{lll}
x_{1} & y_{1} & z_{1}
\end{array}\right),\left(\begin{array}{lll}
x_{2} & y_{2} & z_{2}
\end{array}\right)\right\rangle=x_{1} x_{2}+y_{1} y_{2}
$$

Show that $\langle\cdot, \cdot\rangle$ is NOT an inner product by showing that one of the four inner product axioms fails.
12. (6 points) Suppose A is a nonsingular matrix. Use induction to prove that $\left(A^{p}\right)^{-1}=\left(A^{-1}\right)^{p}$ for any positive integer p.
13. (3 points) Consider the vector space \mathcal{P}_{3} with the inner product

$$
\langle p(x), q(x)\rangle=\int_{0}^{1} p(x) q(x) d x
$$

Show that $p_{1}(x)=x$ and $p_{2}(x)=x^{2}-\frac{3}{4} x$ are orthogonal.
14. (10 points) Consider the homomorphism $h: \mathcal{N}_{2 \times 2} \rightarrow \mathcal{P}_{2}$ defined by

$$
h\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)=a+b+(c-d) x+d x^{2} .
$$

(a) Before you work any other parts of this problem, determine the sum of the rank of h and the nullity of h, and say how you know.
(b) Find a basis for the range space of h. Then state the rank of h.
(c) Find a basis for the null space of h. Then state the nullity of h.
15. (5 points) Suppose A is an $n \times n$ matrix. Write five distinct statements that are equivalent to the statement A is nonsingular.

