Math 236 - Assignment 1 Name
January 21, 2026 Score

Show all work to receive full credit. Supply explanations when necessary. Do all computa-
tions by hand. This assignment is due January 28.

1. Find the solution set of the homogeneous system by reducing to echelon form.

r + QZL'Q + T3 + 4284 + x5 = 0
2.171 + 6[E2 + 31‘3 + 11[E4 + Ty = 0
r1 4+ 4dxy + 213 4+  Txy =0

2. Find the solution set by reducing to echelon form.

I —f- 31’2 + T3 —I— 2[E4 = 1
2017 + O6xy + 4dx3 + 8xy =
2.’13'3 + 4{134 =1

3. Find the number b that makes the coefficient matrix singular. Then, with that b, find
the right-hand side g that makes the system solvable. Finally, find the solution set for
that singular case.

3r + 4y = 16
dr + by = ¢

4. For constants a, b, ¢, and d, the equation ax + by + cz = d describes a plane in 3-
dimensional space. By reducing an appropriate 3 x 4 linear system to echelon form,
find an equation of the plane that passes through the points (1,2,3), (—2,1,0), and

(3,—4,1).
5. Describe all functions g(z) = az? + bz + ¢ such that g(1) = 4 and g(—1) = 2. Do so
a
by writing | b | = particular + homogeneous.
c

6. Show that each statement is false by giving a counterexample.

(a) A linear system has at most one particular solution.
(b) A linear system has at least one particular solution.

¢) Every underdetermined system (more unknowns than equations) has infinitel
y y y
many solutions.

(d) Every overdetermined system (more equations than unknowns) has no solution.

7. Use our definition of nonsingular to show that the following matrix is nonsingular.
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8. Use our definition of nonsingular to show that the following matrix is singular.

1 2 1
4 1 0
3 -1 -1



