Math 240 - Final Exam December 17, 2020

Name	Key		
	J	Score	

Show all work to receive full credit. You must work individually. This test is due no later than December 18 at 11:59 pm. If your approach to any problem on the test requires a partial fraction decomposition, you may use technology to find your PFD.

1. (12 points) According to Newton's Law of Cooling, the temperature T at time t of an object cooling in a medium of constant temperature M is described by the differential equation

$$\frac{dT}{dt} = k(M - T),$$

where k is some constant.

(a) Solve the differential equation.

$$\frac{d\tau}{m-T} = kdt$$

$$- \ln |m-T| = kt + C$$

$$\ln |m-T| = -kt - C$$

$$|M-T| = e^{-c_1}e^{-kt} = c_3e^{-kt}$$

$$M-T = c_3e^{-kt}$$

$$T(t) = M-c_3e$$

(b) An object at 120°F is moved into a large room with an ambient temperature of 72°F. The object cools to 100°F in 6 min. Use your result from part (a) to find a formula for the temperature of the object at time t.

$$T(t) = 7a - Ce^{-kt}$$

 $T(0) = 120 = 7a - C$
 $\Rightarrow C = -48$
 $T(t) = 7a + 48e^{-kt}$

$$T(6) = 100 \Rightarrow 38 = 48e^{-6k}$$

$$k = \frac{\ln^{28}/48}{-6} = \frac{\ln^{7/2}}{-6}$$

$$T(t) = 72 + 48e^{\frac{\ln 7/3}{6}t}$$

(c) When will the object reach 76°F?

$$76 = 72 + 48 e^{\frac{\ln \frac{1}{12}}{6}} +$$

$$\Rightarrow \frac{4}{48} = e^{\frac{\ln \frac{1}{12}}{6}} +$$

$$\Rightarrow \ln \frac{1}{18} = \frac{1}{6} \ln \frac{7}{18} +$$

$$t = \frac{-6 \ln 12}{\ln 7 - \ln 12}$$

$$\approx 27.6 \text{ min}$$

2. (20 points) The following differential equation falls into at least two of the named types of equations in section 1.6. Use two different approaches from section 1.6 to solve the equation. Use a word or short phrase to describe each approach.

$$2xyy' = x^2 + 2y^2$$

(a) First approach:

$$y' = \frac{x^{3}}{2xy} + \frac{2y^{3}}{2xy}$$

$$y' - \frac{1}{x}y = \frac{1}{2}xy^{-1}$$

$$\frac{Bernoull}{Let u = y^{3}}$$

$$u' = 2yy'$$

$$xu' = x^{3} + 2u$$

(b) Second approach:

$$y' = \frac{x^{2}}{2xy} + \frac{3y^{4}}{2xy}$$

$$y' = \frac{1}{2} \frac{x}{y} + \frac{y}{x}$$

$$y' = \frac{1}{2} \frac{1}{2} \frac{1}{y} + \frac{y}{x}$$

$$y' = \frac{1}{2} \frac{1}{2} \frac{1}{y} + \frac{y}{x}$$

$$u' - \frac{2}{x}u = x$$

$$\mu(x) = e^{\int -\frac{2}{x}dx}$$

$$= e^{-2\ln|x|} = e^{\ln x^{2}} = \frac{1}{x^{2}}$$

$$\frac{1}{x^{2}}u(x) = \int \frac{1}{x^{2}} \times dx$$

$$\frac{1}{x^{2}}u(x) = \ln|x| + C$$

$$u(x) = x^{2}\ln|x| + Cx^{2}$$

$$y(x) = \pm \sqrt{x^{2}\ln|x| + Cx^{2}}$$

$$x \frac{du}{dx} = \frac{1}{a} \frac{1}{u}$$

$$u du = \frac{1}{a} \frac{1}{x}$$

$$\frac{u}{a} = \frac{1}{a} \ln |x| + C$$

$$y(x) = \pm \sqrt{x^{2} \ln |x|} + Cx^{2}$$

$$u^{3} = \ln |x| + C$$

$$u^{3} = \ln |x| + C$$

$$\frac{y^{2}}{x^{2}} = \ln |x| + C$$

- 3. (21 points) For any nonzero constant k, the equation y' + ky = 0 describes exponential growth or decay. This semester, we have studied at least 5 different ways to solve this equation. Solve the equation using three different approaches. Use a word or short phrase to describe each approach.
 - (a) First approach: SEPARABLE

$$y' = -ky$$

$$\frac{dy}{y} = -k dx$$

$$\ln |y| = -kx + C$$

$$|y| = e^{c} e^{kx}$$

$$y = C_a e^{-kx}$$

$$y(x) = C_a e^{kx}$$

(b) Second approach: Linear,
$$|S^T|$$
 order
$$\mu(x) = e^{\int k \, dx} = e^{kx}$$

$$e^{kx} y(x) = \int 0e^{kx} \, dx$$

$$y(x) = Ce^{-kx}$$

 $e^{kx}y(x) =$

$$s \times (s) - y(0) + \times (s) = 0$$

$$(s+1) \gamma(s) = \gamma(0)$$

$$\frac{y(s)}{s} = \frac{y(0)}{s+1}$$

SOME OTHER APPROACHES ...

- CONST. COEFF, LINEWZ, Homogwous --- CHAP 2
- Power SERIES --- CHAP 3
- · kdx + \fdy = 0 EXACT --- CHAP 1

4. (10 points) Solve the following initial value problem. Use any applicable method.

$$y'' - 5y' + 4y = 2e^{2x},$$
 $y(0) = 3, y'(0) = 5$

Homo. Egn:

$$r^2 - 5r + 4 = 0$$

$$y_c(x) = c_1 e^{4x} + c_2 e^{x}$$

Non Homo. Egn:.

$$g(x) = \lambda e^{\lambda x}$$

$$A_b(x) = A e_{ax}$$

$$y_{p}^{"} - 5y_{p}^{'} - 4y_{p} =$$

$$4Ae^{3x}-10Ae^{3x}+4Ae^{3x}$$

$$= - \lambda A e^{\lambda x} = \lambda e^{\lambda x}$$

$$\sqrt{}$$

$$\lambda^b(x) = -\epsilon_{gx}$$

$$A(x) = C' G_{x} + C^{3} G_{x} - G_{yx}$$

$$y(0) = 3 \Rightarrow C_1 + C_2 - 1 = 3$$

$$y'(0) = 5 \Rightarrow 4c_1 + c_2 - 2 = 5$$

$$C_1 + C_2 = 4$$

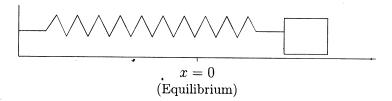
$$4c_1+c_2=7$$

$$-3c_1 = -3$$

$$c_a = 3$$

$$y(x) = e^{4x} + 3e^{x} - e^{2x}$$

5. (15 points) A 1-kg mass is attached to a spring with spring constant 5 N/m. The damping constant for the system is 2 N-sec/m. The mass is moved 1 m to the right of equilibrium (stretching the spring) and released from rest. Set up and solve the initial value problem that describes the motion. Write your final answer in terms of a single trigonometric function with phase shift.



$$x'' + 2x' + 5x = 0$$

 $x(0) = 1, x'(0) = 0$

LAPLACE TRANSFORMS ...

$$8^{3} \times (s) - s + 2s \times (s) - 2 + 5 \times (s) = 0$$

$$(s^{3} + 2s + 5) \times (s) = s + 2$$

$$\times (s) = \frac{s + 2}{(s + 1)^{3} + 4} = \frac{s + 1}{(s + 1)^{3} + 4} + \frac{1}{(s + 1)^{3} + 4}$$

$$X(t) = e^{t}\cos at + \frac{1}{a}e^{t}\sin at$$

$$C_1 = \frac{1}{2}$$

$$C_2 = \frac{1}{2}$$

$$A = \sqrt{\frac{1}{2} + \left(\frac{1}{2}\right)^2} = \sqrt{\frac{5}{4}} = \sqrt{\frac{5}{2}}$$

$$Q = TAN^{-1} Q$$

$$(X(t) = \frac{\sqrt{5}}{8} e^{-t} \sin(3t + \tan^2 3)$$

6. (12 points) Use Laplace transform methods to find a nontrivial solution satisfying x(0) = 0. You may use your table of Laplace transforms whenever necessary.

$$tx'' - 2x' + tx = 0$$

$$\frac{1}{3} \{ + x^{n} \} - 2 \frac{1}{3} \{ x^{n} \} + \frac{1}{3} \{ + x^{n} \} = 0$$

$$-\frac{d}{ds} \left(s^{2} \times (s) - s \times (s) - x^{n} \times (s) \right) - 2 s \times (s) + 2 \times (s) - \frac{d}{ds} \times (s) = 0$$

$$-s^{2} \times (s) - 3 s \times (s) - 3 s \times (s) - x^{n} \times (s) - x^{n} \times (s) = 0$$

$$-(s^{2} + 1) \times (s) = 4 s \times (s)$$

$$\times (s) = \frac{-4s}{s^{2} + 1} \times (s)$$

$$\frac{dx}{x} = \frac{-4s}{s^{2} + 1} \times (s)$$

7. (10 points) Solve the following one-dimensional heat equation with Dirichlet boundary conditions. Rather than derive the solution method (as we did in class), you can use Theorem 1 on page 593.

$$10\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}, \quad 0 < x < 5, \quad t > 0,$$
$$u(0, t) = u(5, t) = 0,$$
$$u(x, 0) = 25$$

THEOREM 1 ...

Solution 18
$$(x,t) = \sum_{n=1}^{\infty} b_n e^{-n^3\pi^2 t/a50} \sin \frac{n\pi x}{5}$$

WHERE

$$b_{n} = \frac{3}{5} \int_{0}^{5} 85 \sin \frac{n\pi x}{5} dx$$

$$= 10 \int_{0}^{5} \sin \frac{n\pi x}{5} dx$$

$$= -\frac{50}{n\pi} \cos \frac{n\pi x}{5}$$

$$= -\frac{50}{n\pi} \left(\cos n\pi - 1 \right)$$

$$= -\frac{50}{n\pi} \left[(-1)^{n} - 1 \right]$$

$$= \frac{100}{n\pi} , \quad n = 1,3,5,7,...$$

$$0, \quad n = 3,4,6,...$$