Math 240 - Final Exam Name \(eq
December 17, 2020 < Score

Show all work to receive full credit. You must work individually. This test is due no
later than December 18 at 11:59 pm. If your approach to any problem on the test requires
a partial fraction decomposition, you may use technology to find your PFD.

1. (12 points) According to Newton’s Law of Cooling, the temperature T at time t of an
object cooling in a medium of constant temperature M is described by the differential

equation
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where k is some constant.
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(b) An object at 120°F is moved into a large room with an ambient temperature of
72°F. The object cools to 100°F in 6 min. Use your result from part (a) to find a
formula for the temperature of the object at time t.
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(c) When will the object reach 76°F?
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2. (20 points) The following differential equation falls into at least two of the named types
of equations in section 1.6. Use two different approaches from section 1.6 to solve the
equation. Use a word or short phrase to describe each approach.
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(b) Second approach:
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3. (21 points) For any nonzero constant k, the equation 4’ + ky = 0 describes exponential
growth or decay. This semester, we have studied at least 5 different ways to solve this
equation. Solve the equation using three different approaches. Use a word or short
phrase to describe each approach
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4. (10 points) Solve the following initial value problem. Use any applicable method.

y' =5y +dy=2¢*, y(0)=3,4(0)=5
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5. (15 points) A 1-kg mass is attached to a spring with spring constant 5N /m. The
damping constant for the system is 2 N-sec/m. The mass is moved 1 m to the right of
equilibrium (stretching the spring) and released from rest. Set up and solve the initial
value problem that describes the motion. Write your final answer in terms of a single
trigonometric function with phase shift. '
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6. (12 points) Use Laplace transform methods to find a nontrivial solution satisfying
z(0) = 0. You may use your table of Laplace transforms whenever necessary.
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7. (10 points) Solve the following one-dimensional heat equation with Dirichlet boundary
conditions. Rather than derive the solution method (as we did in class), you can use
Theorem 1 on page 593.
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