Math 240 - Quiz 5

September 28, 2023

Name_	key	
	J	Score

Show all work to receive full credit. Supply explanations when necessary.

1. (3 points) Consider the equation $yy'' = 6x^4$. Show that $y(x) = x^3$ is a solution, and show that $y(x) = 2x^3$ is NOT a solution. Why is a linear combination of solutions

$$y = x$$
 $y' = 3x^{3}$
 $y'' = 6x^{4}$
 $y'' = 6x^{3}$
 $y'' = 12x$

The Equation is not Home

LINEWS AND NOT HOMOGENEOUS.

2. (3 points) Suppose a and b are real numbers with $a \neq b$. Compute the Wronskian of $y_1(x) = e^{ax}$ and $y_2(x) = e^{bx}$.

$$W[y_1, y_2](x) = e^{ax} \text{ and } y_2(x) = e^{bx}.$$

$$W[y_1, y_2](x) = \begin{vmatrix} e^{ax} & e^{bx} \\ ae^{ax} & be^{bx} \end{vmatrix} = b e^{(a+b)x} - a e^{(a+b)x}$$

$$= (b-a) e^{(a+b)x}$$

$$(Notice That W)$$

3. (2 points) It is easy to verify (don't bother) that $y_1(x) = 1$ and $y_2(x) = e^x$ are solutions of y'' - y' = 0. Find another solution.

LINEUR, HOMOGENEOUS

$$y(x) = C_1 + C_2 e^{x}$$
 is a sociution for any $c_1 \notin C_2$
 $e.g., y(x) = \pi + \sqrt{a}e^{x}$

4. (2 points) It is easy to verify (don't bother) that $y_1(x) = x^2$ and $y_2(x) = x^3$ different, linearly independent solutions of the initial value problem

$$x^2y'' - 4xy' + 6y = 0;$$
 $y(0) = 0, y'(0) = 0.$

Explain why does this not contradict our existence/uniqueness theorem for linear equations?

Our existence/uniqueness theorem requires
The Leading coefficient function to BE
the constant function
$$\alpha(x) \equiv 1$$
.