Math 240 - Quiz 5
September 28, 2023

Name \qquad
Score \qquad

Show all work to receive full credit. Supply explanations when necessary.

1. (3 points) Consider the equation $y y^{\prime \prime}=6 x^{4}$. Show that $y(x)=x^{3}$ is a solution, and show that $y(x)=2 x^{3}$ is NOT a solution. Why is a linear combination of solutions NOT a solution?
2. (3 points) Suppose a and b are real numbers with $a \neq b$. Compute the Wronskian of $y_{1}(x)=e^{a x}$ and $y_{2}(x)=e^{b x}$.
3. (2 points) It is easy to verify (don't bother) that $y_{1}(x)=1$ and $y_{2}(x)=e^{x}$ are solutions of $y^{\prime \prime}-y^{\prime}=0$. Find another solution.
4. (2 points) It is easy to verify (don't bother) that $y_{1}(x)=x^{2}$ and $y_{2}(x)=x^{3}$ are two different, linearly independent solutions of the initial value problem

$$
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0 ; \quad y(0)=0, y^{\prime}(0)=0 .
$$

Explain why does this not contradict our existence/uniqueness theorem for linear equations?

