Math 240 - Test 1 Name \<e5
September 14, 2023 Score

Show all work to receive full credit. Supply explanations where necessary. Give explicit
solutions when possible. All integration must be done by hand (showing work),: unless
otherwise specified.

1. (5 points) Make up an example of an initial value problem for a 3rd—order ordinary,
~ linear differential equation.
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2. (3 points) Make up an example of a 2nd-order, partial diffential equation with depen-
dent variable v and independent variables z and y.
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3. (3 points) Which of the following equations are linear? Select all that apply.
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" 4. (6 points) Use Euler’s method with A = 0.1 to approximate the value of y(2.3) for the
initial value problem y' = z,/y, y(2) =9.
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5. (8 points) Consider the initial value problem:
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( ) Solve the initial value problem.

u@=1 > 9@z~ C = =N

(b) Compute y(2 3) and compare your answer to your result in problem 4.
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6. (12 pomts) Analyze each initial value problem to determine Wh1ch one of these applies. DEC \D ™ A'\(—r
DT,
(A) A solution exists, but it is not guaranteed to be unique. -

(B) There is a unique solution.

(C) A solution is not guaranteed to exist.
Be sure to show work or explain.
(a) ¥ - 3y** =0, y(2)=0
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7. (12 points) Solve: t3d—x +3t’z=t, z(2)=0

dt
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8. (7 points) Solve: %=x\/m, y(—4) =0
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9. (2 points) At the start of an experiment, a motorboat is coasting at 20 mph. The time
rate of change of the boat’s velocity is proportional to the square of its velcoity. Write
the corresponding initial value problem.
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10. (12 points) Consider the following initial value problem:
(1/z + 2y°z) dz + (2yz® — cosy) dy =0, y(1) = .
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(a) Use the test for exactness to show that the equation is exact?
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(b) Solve the initial value problem.
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11. (10 points) Consider the differential equation W3- y + —. A portion of its slope
x
field is shown below.
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(a) What is the slope of the solution curve passing through (5,10)?
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(b) Suppose you are given some initial condition y(zo) = o, where 7o > 0. Make a
conjecture about the values of y(z) as z — oo.
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c) The general solution of the equation involves a non-elementary function known
, g
“as the exponential integral. Carry out the solution process as far as you can.
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(d) (2 points extra credit) Your general solution in part (c) should support your
conjecture in part (b). Show that it does. ’
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The following probléms make up the take-home portion of the test. These problems
are due September 19, 2023. You must work on your own.

12. (5 points) The following equation is called a homogeneous equation. It is not separable,
but it can be transformed to a separable equation by an appropriate substitution. See
pages 60-61 of our textbook. Then use the appropriate substitution to solve this
equation.
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13. (7 points) Suppose T is the temperature of an object at time ¢. Newton’s law of cooling
“states that dT'/dt =

(a) Find the general solution of the differential equation.
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(b) A pot of boiling water at 100° C is removed from a stove and left to cool. After
o min, the water temperature is 80° C, and after another 5min, it has dropped to
65° C. Assuming Newton’s law of cooling, find the surrounding temperature.
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14. (8 points) A 1000-L tank initially contains 500 L of a salt solution in which 5 kg of salt
are dissolved. Brine (salt water) with a salt concentration of 0.2kg/L enters the tank
at a rate of 5L/min. The liquid is kept uniform by stirring and flows out of the tank -
at 4L/min. Let A(t) denote the amount of salt in the tank after ¢ minutes. Set up
and solve the appropriate initial value problem to determine A(t). How much salt is
in the tank when it is full?

\ MS/W\\LV\
' Vo\_ume OF TANY |0 CREAWES AT \L/‘N\‘W\.

Vix)= 5oo+ T 5' Oﬁ#é.&’o

A kg o NA \<§/‘
(5;.5—‘—‘(:)\_ | 5@4__& A VIYR

,—OLA—':.\-L\A 3 A(D\=5
S |

506+ %
C = -5 (o)
aA 4 )
ye ¥ Beos t \ ////’*"” N ) \
\ \
) = e“gg’%if h k/ ALT- e
Y f lsort | \ _ a5 [s0)
= e\'\ (500-\—453 \\ (500-\-'%.’)\-\

(5oo+t§ A= j(&m* o

(500 Jr‘t) + C L

A —L (500+ ﬂ .

(Soo*‘k

A C ;
Aco\=5'»_=> 100+ a5t =5 -



