$\qquad$

Show all work to receive full credit. You must work individually. This test is due December 14. If your approach to any problem on the test requires a partial fraction decomposition, you may use technology to find your PFD. All integration must be done by hand.

1. (10 points) A brine solution with a salt concentration of $0.2 \mathrm{~kg} / \mathrm{L}$ flows into a large tank at the constant rate of $4 \mathrm{~L} / \mathrm{min}$. The tank initially held 100 L of pure water. The solution inside the tank is well-mixed and flows out at the rate of $2 \mathrm{~L} / \mathrm{min}$. Determine the mass of salt in the tank after $t$ minutes. When will the mass of salt in the tank reach 40 kg ?
2. (10 points) Use Laplace transform methods to solve the following equation.

$$
y^{\prime \prime}+4 y^{\prime}-5 y=t e^{t}, \quad y(0)=1, y^{\prime}(0)=0
$$

3. (10 points) Solve the following initial value problem. (It may be helpful to use a property of logarithms.)

$$
\frac{d y}{d x}=\frac{y(1+\ln y-\ln x)}{x}, \quad y(1)=8
$$

4. (10 points) Consider the linear, 2nd-order equation $x y^{\prime \prime}+y^{\prime}+x y=0$. This equation is called Bessel's equation of order 0. Explain why it is probably not a good idea to look for a power series solution centered at $x=0$. Nonetheless, find such a power series solution. Contrary to our typical problems of this form, you should have only one arbitrary constant of integration. Write out several terms of the solution that satisfies $y(0)=1$. (The solution is typically called $J_{0}(x)$, and it is defined in SageMath by bessel_J $(0, \mathrm{x})$. You'll get one point extra credit if you attach a graph of $J_{0}(x)$ for $0 \leq x \leq 25$.)
5. (10 points) Solve the following one-dimensional heat equation with Neumann boundary conditions. Do not derive the solution method-just use the theorem in the textbook.

$$
\begin{gathered}
\frac{\partial u}{\partial t}=2 \frac{\partial^{2} u}{\partial x^{2}}, \quad 0<x<1, \quad t>0 \\
u_{x}(0, t)=u_{x}(1, t)=0 \\
u(x, 0)=x-x^{2}
\end{gathered}
$$

