Math 240 - Final Exam B Name
December 14, 2023
Score \qquad

Show all work to receive full credit. Supply explanations where necessary.

1. (4 points) Use any method to find the general solution of $y^{\prime \prime \prime}+2 y^{\prime \prime}+4 y^{\prime}=0$.
2. (8 points) Use any method to find the general solution of $y^{\prime \prime}-2 y^{\prime}+y=8 e^{t}$.
3. (10 points) In this problem, you will find five (5) ordinary differential equations. Each equation has a specific name or can be described by a word, phrase, or short sentence. For each equation, write that name or description, and then write a sentence describing a solution method. Be brief, but specific, when describing your solution method.
(a) $\frac{1}{x} \frac{d y}{d x}-\frac{2 y}{x^{2}}=x \cos x, \quad x>0$
(b) $3 x y^{2} \frac{d y}{d x}+y^{3}=x^{3}$
(c) $y^{\prime \prime}-4 y^{\prime}+4 y=t^{3} e^{2 t} ; \quad y(0)=0, y^{\prime}(0)=0$
(d) $\left(x+x y^{2}\right) d x+x^{2} y d y=0$
(e) $x^{\prime \prime}-t x^{\prime}+x=0 ; \quad x(0)=0, x^{\prime}(0)=0$
4. (16 points) Choose any two of the equations from problem 3 and solve each by using the solution method that you described above.
(a) First problem:
(b) Second problem:
5. (12 points) A 1-kg mass is attached to a spring with spring constant $k=25 \mathrm{~N} / \mathrm{m}$. The damping constant for the system is $b=6 \mathrm{~N}-\mathrm{sec} / \mathrm{m}$. The mass is moved 1 m to the right of equilibrium (stretching the spring) and released from rest. Find the equation of motion. If applicable, write your solution in terms of a single sine or cosine with a phase shift.

Follow-up: After the mass passes through equilibrium for the first time, it will very soon reach its farthest point to the left of equilibrium. When will it reach that point?

