Math 240 - Final Exam A	Name	
December 5, 2025		Score

Show all work to receive full credit. You must work individually. This test is due December 11. All integration must be done by hand (showing work).

1. (10 points) A large tank initially contains $1000 \,\mathrm{L}$ of a salt solution in which $0.5 \,\mathrm{kg}$ of salt are dissolved. A salt solution containing $0.02 \,\mathrm{kg}$ of salt per liter enters the tank at $4 \,\mathrm{L/min}$ and is uniformly mixed. The mixed solution leaves the tank at $2 \,\mathrm{L/min}$. Let A(t) denote the amount of salt in the tank after t minutes. Set up and solve the appropriate initial value problem to determine A(t). When will the concentration of salt in the tank reach $0.01 \,\mathrm{kg/L}$?

2. (10 points) Use Laplace transform methods to solve the following equation.

$$ty'' + (2t - 3)y' + 2y = 0; \quad y(0) = 0, \quad y'(0) = 0$$

3. (10 points) Solve the following one-dimensional heat equation with Dirichlet boundary conditions. Do not derive the solution method—just use the result we derived in class. (See Theorem 1 on page 593.)

$$\frac{\partial u}{\partial t} = \frac{1}{2} \frac{\partial^2 u}{\partial x^2}, \quad 0 < x < 10, \quad t \ge 0,$$
$$u(0, t) = u(10, t) = 0,$$
$$u(x, 0) = 100 - 10x, \quad 0 \le x \le 10$$