Test 1A

(1) This is a preview of the published version of the quiz

Started: Feb 18 at 9:27am

Quiz Instructions

Choose the best answer for each problem. There is also a paper portion of the test that is posted and due Tuesday, Feb 15.

Question 1

2 pts

Choose the word or phrase that does NOT describe the equation

$$rac{d^2y}{dx^2} + 7igg(rac{dy}{dx}igg)^3$$
 $-8y = x^2$.

Linear

NOT LINEAR BECAUSE OF 3RD power OF dy

- O 2nd-order
- Ordinary
- \bigcirc Independent variable x

Question 2

2 pts

Choose the word of phrase that does NOT describe the equation $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = 5z$

Linear

Partial

Question 3

. 2 pts

Choose the word or phrase that does NOT describe the equation $(x^2 + y^2) dx - 2xy dy = 0.$

- Linear
- IT IS NEITHER LINEAR IN X WORY.
- Ordinary
- ↑ 1st-order
- O It is not clear which variable is independent.

Question 4

6 pts

Solve the initial value problem. Then compute y(3).

$$\frac{dy}{dx} = \frac{5x}{3x^2+1}, \quad y(0) = 7$$

$$\int \frac{5x}{3x^{2}+1} dx = \frac{5}{6} \int \frac{1}{u} du = \frac{5}{6} \ln |u| + C$$

$$u = 3x^2 + 1$$

$$du = 6x dx$$

$$u = 3x^{2} + 1$$
 $du = 6x dx$
 $= \frac{5}{6} ln(3x^{2} + 1) + C$

$$\bigcirc$$
 7.5554

 \bigcirc 10.3537

$$y(x) = \frac{5}{6} \ln(3x^2+1) + 7 \Rightarrow y(3) \approx 9.7768$$

Question 5

8 pts

Use Newton's law of cooling to solve: An object that was outside overnight has an initial temperature of 13° F. The object is moved indoors where the temperature is

 68° F. After 20 minutes, the temperature of the object is 50° F. When will the

$$T(0) = 13 \Rightarrow M = 55$$
 $T(t) = 68 - 55e^{kt}$

T(t) = 68 - Mpkt

$$T(a0) = .50 \Rightarrow 50 = 68 - 55 e^{30k}$$

$$\Rightarrow k = \frac{\ln \frac{18}{55}}{30}$$

$$60 = 68 - 55e^{kt} \Rightarrow t = \frac{h \frac{6}{55}}{k} \approx 39.67$$

Question 6

3 pts

What is the slope of the solution curve through the point (1,3)?

$$xy\,dx + (y^4 - 3x^2)\,dy = 0$$

$$\frac{dy}{dx} = \frac{-xy}{y^4 - 3x^2}$$

$$\sqrt{-3/78}$$

$$\bigcirc$$
 3/26

$$\bigcirc -2/47$$

$$\bigcirc -1/30$$

$$\frac{dy}{dx} = \frac{-(1)(3)}{(3)^{4} - 3(1)^{2}} = \frac{-3}{81 - 3}$$

$$= -3/7$$

Question 7

4 pts

Through which of these points should we expect a solution, but not necessarily a unique solution?

$$(x^2-1) \frac{dy}{dx} = \sqrt[3]{y^2-4}$$

$$\frac{dy}{dx} = \frac{\sqrt[3]{y^2 - 4}}{x^2 - 1}$$

$$\frac{dy}{dx} = \frac{\sqrt[3]{y^2 - 4}}{\sqrt[3]{x^2 - 1}}$$
 $f(x,y) = \frac{\sqrt[3]{y^2 - 4}}{\sqrt[3]{x^2 - 1}}$

$$\bigcirc (0,2)$$

$$\bigcirc$$
 $(-1,5)$

$$x \neq \pm 1$$
.

$$(2,0)$$
 $(-1,0)$

$$f_y(x,y) = \frac{2y}{3(x^2-1)(y^2-4)^{2/3}}$$

 $f_y(x,y) = \frac{2y}{3(x^2-1)(y^2-4)^{2/3}}$
 $f_y(x,y) = \frac{2y}{3(x^2-1)(y^2-4)^{2/3}}$

SHOULD NOT EXPECT

UNIQUE SOLUTION THROUGH

Question 8

4 pts

Consider the following initial value problem. Which one of the following is the BEST conclusion we can draw from our existence/uniqueness theorems?

$$\sqrt{x}\,rac{dy}{dx}-4e^xy=\sin x,\quad y(1)=2$$

$$\frac{dy}{dx} - \frac{4e^{x}}{\sqrt{x}}y = \frac{\sin x}{\sqrt{x}}$$

There is a unique solution for all x>0.

LINEAR WITH CONTINUOUS

COEFFICIENTS FOR

A solution is not guaranteed.

X > O.

- A solution is guaranteed, but it might not be the only solution.
- A unique solution is guaranteed, but we cannot say anything about the domain of the solution.

Question 9

7 pts

The quantity Q is growing in such a way that $\dfrac{dQ}{dt}=kQ$. Suppose that

$$Q(10)=300$$
 and $Q(15)=428.$ Find $Q(0).$

$$Q(t) = Q_0 e^{kt}$$

$$Q(10) = 300 \Rightarrow 300 = Q_0 e^{10k}$$

$$\bigcirc$$
 Approximately 126.8

$$\frac{438}{300} = e^{5k} \Rightarrow k = \frac{438}{300}$$

Question 10

8 pts

Solve. Then determine y(0.1).

$$rac{dy}{dx}-3y=4e^{5x},\quad y(0)=5$$

$$\mu(x) = e^{\int -3 dx} = e^{-3x}$$

$$e^{-3x}y = \int 4e^{5x}e^{-3x} dx = \int 4e^{3x} dx$$

$$y(x) = \lambda e^{5x} + Ce^{3x}$$

$$y(0) = 5. \Rightarrow C = 3$$

$$y(x) = \lambda e^{5x} + 3e^{3x}$$

$$y(x) = \lambda e^{5x} + 3e^{3x}$$

y(0.1) = 2e^{0.5} + 3e^{0.3} x 7.3470

Not saved

Submit Quiz