Math 240 - Quiz 9

April 6, 2023

Name _		
	Score	

Show all work to receive full credit. Supply explanations when necessary.

Suppose x=0 is a singular point of the equation y''+B(x)y'+C(x)y=0. x=0 is called a regular singular point if both xB(x) and $x^2C(x)$ are analytic at x=0. In such a case, the original singularity at x=0 is rather "weak," and a series solution of the form $y(x)=x^s\sum_{n=0}^{\infty}a_nx^n=\sum_{n=0}^{\infty}a_nx^{n+s}$ may be possible, where s is some nonzero real number. Notice that this series solution may not be a power series.

- 1. (5 points) Let's use a series solution approach to solve the Cauchy-Euler equation $x^2y'' + xy' 9y = 0$.
 - (a) Show that x = 0 is a regular singular point.
 - (b) Assume $y(x) = \sum_{n=0}^{\infty} a_n x^{n+s}$ is a solution for some nonzero real number s. Differentiate, substitute, and equate coefficients as per our usual approach.
 - (c) Use a_0 as an arbitrary constant and assume $a_0 \neq 0$. What does your recurrence relation tell you when n = 0? (You should get what is called an *indicial equation*. That will give you two possible values for s. What are they?)
 - (d) One at a time, substitute your s-values into your recurrence relation from part (b) and solve for the coefficients a_n .
 - (e) Each s-value and the corresponding a_n 's gives you a solution for the original equation. What is the general solution?
 - (f) Use the techniques of chapter 2 to solve the equation, and then compare your results.

- 2. (5 points) Now let's try applying the new approach to solve $x^2y'' + 4xy' + (x^2 + 2)y = 0$.
 - (a) Show that x = 0 is a regular singular point.

(b) Assume $y(x) = \sum_{n=0}^{\infty} a_n x^{n+s}$ is a solution for some nonzero real number s. Differentiate, substitute, and equate coefficients as per our usual approach.

(c) Assume $a_0 \neq 0$ and $a_1 = 0$. What does your recurrence relation tell you when n = 0? (You should get two s-values from your indicial equation.)

(d) One at a time, substitute your s-values into your recurrence relation from part (b) and solve for the coefficients a_n . Find a few nonzero terms for each s.

(e) Each s-value and the corresponding a_n 's gives you a solution for the original equation. What is the general solution? (Just write a few terms.)