Math 240 - Assignment 5

February 22, 2024
Name \qquad
Score \qquad

Show all work to receive full credit. Supply explanations when necessary. This assignment is due February 29.

1. Find the general solution: $y^{(5)}+2 y^{(3)}=0$
2. A homogeneous, constant-coefficient, linear differential equation has the following characteristic equation:

$$
r(r-1)^{4}\left(r^{2}+2 r+10\right)^{2}=0 .
$$

Find the general solution of the original differential equation.
3. Solve the Cauchy-Euler equation $x^{2} y^{\prime \prime}+7 x y^{\prime}+25 y=0$.
4. Give an example of constants m, b, and k for which the mass-spring system described by $m x^{\prime \prime}+b x^{\prime}+k x=0$ would be critically damped. Describe the form of the solution in this case.
5. A $1-\mathrm{kg}$ mass is attached to a spring with spring constant $\frac{17}{4} \mathrm{~N} / \mathrm{m}$. The damping constant for the system is $1 \mathrm{~N}-\mathrm{sec} / \mathrm{m}$. The mass is moved 2 m to the left of equilibrium (compressing the spring) and released from rest. Find the equation of motion. If applicable, write your solution in terms of a single sine or cosine with a phase shift.

6. A $9-\mathrm{kg}$ mass is attached to a spring with spring constant $37 \mathrm{~N} / \mathrm{m}$. The damping constant for the system is $6 \mathrm{~N}-\mathrm{sec} / \mathrm{m}$. The mass is moved 1 m to the right of equilibrium (stretching the spring) and pushed to the left at $2 \mathrm{~m} / \mathrm{sec}$. (See the figure above.) Find the equation of motion. If applicable, write your solution in terms of a single sine or cosine with a phase shift. When does the mass pass through equilibrium for the second time?
7. A $1-\mathrm{kg}$ mass is attached to a spring with spring constant $16 \mathrm{~N} / \mathrm{m}$. The damping constant for the system is $10 \mathrm{~N}-\mathrm{sec} / \mathrm{m}$. The mass is moved 1 m to the right of equilibrium (stretching the spring) and pushed to the left at $12 \mathrm{~m} / \mathrm{sec}$. (See the figure above.) Find the equation of motion. Is the system underdamped, overdamped, or critically damped? How do you know?
8. Use undetermined coefficients to solve the following equation.

$$
2 y^{\prime \prime}+6 y^{\prime}-20 y=60 \sin 2 x
$$

9. Solve the initial value problem: $\quad y^{\prime \prime}-5 y^{\prime}+4 y=2 e^{4 x} \quad y(0)=1, y^{\prime}(0)=-1$
10. Consider the following equation:

$$
y^{\prime \prime}-10 y^{\prime}+25 y=5 x^{2} e^{5 x}
$$

Solve the corresponding homogeneous equation. Then use your table to find the appropriate form of the particular solution for the nonhomogeneous equation. Do not solve for the undetermined coefficients.

