Math 240 - Assignment 8

March 28, 2024
Name \qquad
Score \qquad

Show all work to receive full credit. Supply explanations when necessary. This assignment is due April 4.
Suppose $x=0$ is a singular point of the equation $y^{\prime \prime}+B(x) y^{\prime}+C(x) y=0 . \quad x=0$ is called a regular singular point if both $x B(x)$ and $x^{2} C(x)$ are analytic at $x=0$. In such a case, the original singularity at $x=0$ is rather "weak," and a series solution of the form $y(x)=x^{s} \sum_{n=0}^{\infty} a_{n} x^{n}=\sum_{n=0}^{\infty} a_{n} x^{n+s}$ may be possible, where s is some nonzero real number. Notice that this series solution may not be a power series.

1. Let's use this series approach to solve the Cauchy-Euler equation $x^{2} y^{\prime \prime}+x y^{\prime}-9 y=0$.
(a) Show that $x=0$ is a regular singular point.
(b) Assume $y(x)=\sum_{n=0}^{\infty} a_{n} x^{n+s}$ is a solution for some nonzero real number s. Differentiate, substitute, and equate coefficients as per our usual approach. Because the series is not technically a power series, it is NOT appropriate to adjust the index when differentiating term by term.
(c) Use a_{0} as an arbitrary constant and assume $a_{0} \neq 0$. What does your recurrence relation tell you when $n=0$? (You should get what is called an indicial equation. That will give you two possible values for s. What are they?)
(d) One at a time, substitute your s-values into your recurrence relation from part (b) and solve for the coefficients a_{n}.
(e) Each s-value and the corresponding a_{n} 's gives you a solution for the original equation. What is the general solution?
(f) Use the techniques of chapter 2 to solve the equation, and then compare your results.
2. Now let's try applying the new approach to solve $x^{2} y^{\prime \prime}+4 x y^{\prime}+\left(x^{2}+2\right) y=0$.
(a) Show that $x=0$ is a regular singular point.
(b) Assume $y(x)=\sum_{n=0}^{\infty} a_{n} x^{n+s}$ is a solution for some nonzero real number s. Differentiate, substitute, and equate coefficients as per our usual approach.
(c) Assume $a_{0} \neq 0$ and $a_{1}=0$. What does your recurrence relation tell you when $n=0$? (You should get two s-values from your indicial equation.)
(d) One at a time, substitute your s-values into your recurrence relation from part (b) and solve for the coefficients a_{n}. Find a few nonzero terms for each s.
(e) Each s-value and the corresponding a_{n} 's gives you a solution for the original equation. What is the general solution? (Just write a few terms.)
