Math 240 - Final Exam B

May 9, 2024
Name \qquad
Score \qquad

Show all work to receive full credit. Supply explanations where necessary.

1. (8 points) Find the general solution of $\left(x^{2}+1\right) \frac{d y}{d x}+3 x y=6 x$.
2. (10 points) Find the general solution: $y^{\prime \prime}-5 y^{\prime}+4 y=2 e^{4 x}$
3. (10 points) Do any two of the following three problems for five (5) points each. If you attempt all three, cross out the one you do not wanted graded.
(a) Find the general solution of $y^{\prime \prime \prime}-4 y^{\prime \prime}+4 y^{\prime}=0$.
(b) Solve: $\left(6 x y-y^{3}\right) d x+\left(4 y+3 x^{2}-3 x y^{2}\right) d y=0$
(c) Find the inverse Laplace transform of $F(s)=\frac{s^{2}+1}{s(s-1)(s-2)}$.
4. (10 points) State the complete recurrence relation that describes the coefficients of the power series solution, and state the guaranteed (by our theorem) radius of convergence.

$$
\left(x^{2}-3\right) y^{\prime \prime}+2 x y^{\prime}=0
$$

5. (10 points) Use Laplace transform techniques to solve.

$$
y^{\prime \prime}+4 y^{\prime}+4 y=t^{3} e^{-2 t} ; \quad y(0)=5, y^{\prime}(0)=-10
$$

6. (12 points) A $4-\mathrm{kg}$ mass is attached to a spring with spring constant $\frac{257}{16} \mathrm{~N} / \mathrm{m}$. The damping constant for the system is $1 \mathrm{~N}-\mathrm{sec} / \mathrm{m}$. The mass is moved 2 m to the right of equilibrium (stretching the spring) and released from rest. Find the equation of motion. Write your final answer in terms of a single sine or cosine with a phase shift.

