
Serious About that 1 Series

Steve Kifowit

Prairie State College

November 10, 2011

The series 1/2+1/6+1/12+1/20+... is
famous for its telescoping nature and conver-
gence to 1. While these qualities make it
attractive to calculus instructors, “that 1
series” has much more to offer. This presen-
tation is about some of its less familiar aspects,
including history, unusual summation techniques,
and applications.
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That 1 series

That 1 series is the quintessential telescoping

series

∞
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n=1

1
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=

∞
∑
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− · · · ,

which converges to 1.
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Of course, it’s better to think about this series

in terms of its partial sums, which collapse like

an old spyglass telescope:

Sk =
k
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n=1

(

1

n
−
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=
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2

)
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+· · ·+
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,

and Sk → 1 as k → ∞.
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Most proofs that the series converges to 1 re-

quire the partial fraction decomposition:

1

n(n + 1)
=

1

n
−

1

n + 1

The partial fraction decomposition takes the

fun out of it! So we’ll be more interested in

proofs that don’t require the PFD.
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PFD-less Induction

We assume, as is the case for k = 1, that

k
∑

n=1

1

n(n + 1)
=

k

k + 1
.

It follows that

k+1
∑

n=1

1

n(n + 1)
=

k

k + 1
+

1

(k + 1)(k + 2)
=

k(k + 2) + 1

(k + 1)(k + 2)
=

(k + 1)2

(k + 1)(k + 2)
=

k + 1

k + 2
.

Induction complete! Convergence to 1 follows

as k → ∞.
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Visual proof of PFD
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Enter Pietro Mengoli

Pietro Mengoli was one of the first mathemati-

cians to systematically study non-geometric se-

ries.

Without using “telescoping” he found the sums

of a number of series that are now considered

to be telescoping.

Even though Mengoli never explicitly used tele-

scoping to compute a sum, he computed lots

of partial sums, and he must have recognized

that terms were canceling.
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For example, here are two lines directly from

his work:

1
3

1
6

1
10

1
15

1
21

1
28

1
36

1
3

2
4

3
5

4
6

5
7

6
8

7
9

Mengoli was interested in the sum of the recip-

rocals of the triangular numbers, and he recog-

nized that the partial sums were approaching

1.

His actual proof was a bit more convoluted.
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S =

(

1

3
+

1

6
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+

1

15
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+
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+
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+ · · ·
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1
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6
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+ · · ·
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1
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+
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)

+
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1
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1
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+ · · · +

1
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)

+ · · ·

=
1

2
+

1

4
+

1

8
+ · · ·
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Mengoli’s conclusion...

∞
∑

n=1

1

n(n + 1)
=

1

2
+

1

6
+

1
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+

1

20
+ · · ·

=
1

2
+

1

4
+

1

8
+ · · ·

= 1
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Another convergence proof

Use integration by parts to establish that
∫ 1

0
xn(1 − x) dx =

(

1

n + 1

) (

1

n + 2

)

.

Now write
∫ 1

0
xn(1 − x) dx =

∫ 1

0
(xn − xn+1) dx

and interpret the second integral as giving the

area between curves.
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0

1

0 1

... etc.

Graphs of y = 1, x, x2, x3, etc.

The regions between the curves fill the unit

square!
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Bernoulli’s approach

N =
a

c
+

a

2c
+

a

3c
+

a

4c
+ · · · = N

P =
a

2c
+

a

3c
+

a

4c
+

a

5c
+ · · · = N −

a

c

N − P =
a

2c
+

a

6c
+

a

12c
+

a

20c
+ · · · =

a

c
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The harmonic series diverges

After establishing the convergence of that 1

series, Bernoulli used his result to prove the

the harmonic series diverges.

For k = 1,2,3, . . .,

∞
∑

n=k

1

n(n + 1)
=

∞
∑

n=k

(

1

n
−

1

n + 1

)

=
1

k
.

Now suppose that the harmonic series con-

verges with sum S. Then

S = 1 +
1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8
+ · · ·
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Now rewrite

S = 1 +
1

2
+

2

6
+

3

12
+

4

20
+

5

30
+

6

42
+

7

56
+ · · ·

or

S = 1+

(

1

2
+

1

6
+

1

12
+ · · ·

)

+

(

1

6
+

1

12
+

1

20
+ · · ·

)

+

(

1

12
+

1

20
+

1

30
+ · · ·

)

+ · · ·

= 1 + 1 +
1

2
+

1

3
+ · · · = 1 + S

The contradiction S = 1 + S concludes the

proof.
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A sum via integration by parts

The improper integral
∫ 0

1
lnx dx = 1

is easily evaluated by using standard integra-

tion by parts (and L’Hôpital’s rule).

Tabular integration by parts is an interesting

alternative.
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signs u and du/dx dv/dx and
∫

dv

+ ln x 1

− 1/x x

+ −1/x2 x2/2

− 2/x3 x3/6

+ −6/x4 x4/24

... ... x5/120

... ... ...

From the table, we have
∫ 0

1
ln x dx = x ln x −

x

2
−

x

6
−

x

12
−

x

20
− · · ·

∣

∣

∣

0

1

17



∫ 0

1
ln x dx = x ln x −

x

2
−

x

6
−

x

12
−

x

20
− · · ·

∣

∣

∣

0

1

After evaluating at x = 0 and x = 1, we have

1 =
1

2
+

1

6
+

1

12
+

1

20
+ · · · .
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Leibniz and Newton

Leibniz computed the sum of the series as fol-

lows:

A =
∞
∑

n=1

1

n
B =

∞
∑

n=1

1

n(n + 1)

A − B = 1 −
1

2
+

1

2
−

1

6
+

1

3
−

1

12
+ · · · = A − 1

Therefore B = 1.
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Apparently to show up Leibniz, Newton be-

came the first person to write the series in a

fairly modern telescoping form. He wrote

1 = 1 −
1

2
+

1

2
−

1

3
+

1

3
−

1

4
+

1

4
−

1

5
+

1

5
+ · · ·

=
1

1 × 2
+

1

2 × 3
+

1

3 × 4
+

1

4 × 5
+ · · ·
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Another way to sum the series

Here is an unusual approach to summing the

series

∞
∑

n=1

1

n(n + 1)
=

1

2
+

1

6
+

1

12
+

1

20
+ · · · .

Consider the following game:

A red marble and a blue marble are

placed into an urn. A marble is se-

lected at random. If the marble is

blue, you win. Otherwise, replace the

red marble, add another red marble,

and repeat the process until you win.
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This tree diagram shows the probabilities

associated with the first few stages of the game.

R1/2

R2/3

R3/4

R4/5

B1/5

B1/4

B1/3

B1/2
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• Let Bn be the event of drawing a blue mar-

ble (i.e. winning) on the nth draw. The

probability of winning (eventually) is given

by

P(B1) + P(B2) + P(B3) + P(B4) + · · · =

1

2
+

1

6
+

1

12
+

1

20
+ · · · .

• Let Rn be the event of drawing n consec-

utive red marbles, and notice that

P(Rn) =
1

n + 1
.

• Since P(Rn) → 0, the events Bn exhaust

the sample space. So you must eventually

draw a blue marble, and the sum above

must converge to 1.
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It is easy to show that the expected number

of draws required to win is given by

∞
∑

n=2

1

n
.

Since the harmonic series diverges, this is a

game you will win, but it should take forever.
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A proof without words

This proof almost doesn’t use the PFD.

1/6
1/5

1/4

1/3

1/2

1

 0  1  2  3  4  5  6

......

y=1/(x+1)

y=1/x

(

1 ·
1

2

)

+

(

1

2
·
1

3

)

+

(

1

3
·
1

4

)

+

(

1

4
·
1

5

)

+

(

1

5
·
1

6

)

+· · · = 1
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That 1 snowman

Here is an interesting problem that can be

found in any one of Stewart’s calculus text-

books:

In the figure below, show that the cen-

ter snowman is made up of circles

having diameters 1/2, 1/6, 1/12, 1/20,

etc. It follows that

1

2
+

1

6
+

1

12
+

1

20
+ · · · = 1.

1

-1 0 1
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1 = 1/2?

1

6
+

1

12
+

1

20
+

1

30
+ · · · =

(

1

2
−

1

3

)

+

(

1

3
−

1

4

)

+

(

1

4
−

1

5

)

+

(

1

5
−

1

6

)

+ · · ·

=
1

2

On the other hand,

1

6
+

1

12
+

1

20
+

1

30
+ · · · =

(

1 −
5

6

)

+

(

5

6
−

3

4

)

+

(

3

4
−

7

10

)

+

(

7

10
−

2

3

)

+ · · ·

= 1

27



That 1 fixed point

Explain how the figure below illustrates

the fact that
1

2
+

1

6
+

1

12
+

1

20
+· · · = 1.

T1=1/2

T2

T3

T4

1

T1=1/2 T2 T3 T4T5 1

y=1/(2-x)

y=x

(1,1)
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Reciprocals of the primes

In a 1938 German paper of only 40 lines, Paul

Erdős gave a pair of very clever proofs of the

divergence of the sum of the reciprocals of the

primes, die vielleicht nicht uninteressant sind.

The first proof is well known. The second

proof is practically unknown. I have never seen

a reference to his second proof nor even an ac-

knowledgement that he gave two proofs.

His second proof is the simpler of the two and

uses the fact that

∞
∑

n=2

1

n(n + 1)
=

1

2
.

29



For any positive integer N , there are bN/mc

integers between 1 and N that are divisible by

m.

Use the fact that

∞
∑

i=2

1

i(i + 1)
=

∞
∑

i=2

(

1

i
−

1

i + 1

)

=
1

2

to establish that

∞
∑

i=1

1

p2
i

<
1

4
+

1

2 · 3
+

1

3 · 4
+

1

4 · 5
+· · · =

1

4
+

1

2
=

3

4
.
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Now assume that
∞
∑

i=1

1

pi
converges.

Then there exists an integer K such that

∞
∑

i=K+1

1

pi
<

1

8
.

Call pK+1, pK+2, pK+3, . . . the “large primes,”

and p1, p2, . . . , pK the “small primes.”
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Let N be a positive integer and let y ≤ N be

a positive, square-free integer with only small

prime divisors.

The integer y must have the factorization

y = p
m1
1 p

m2
2 p

m3
3 · · · p

mK
K ,

where each exponent mi has value 0 or 1.
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It follows that there are 2K possible choices for

the integer y. Those 2K integers must remain

after we remove from the sequence 1,2,3, . . . , N

all those integers that are not square-free or

have large prime divisors.
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It follows that

2K ≥ N −
K
∑

i=1

⌊

N

p2
i

⌋

−
∞
∑

i=K+1

⌊

N

pi

⌋

≥ N −
K
∑

i=1

N

p2
i

−
∞
∑

i=K+1

N

pi

> N −
3

4
N −

1

8
N =

N

8
.

However, if we simply choose N ≥ 2K+3, we

have a contradiction.
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Thanks for attending.

Steve Kifowit - skifowit@prairiestate.edu

Slides and handouts are available at

http://prairiestate.edu/skifowit/
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